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Introductory meme

When your code is a mess but it
somehow still works.
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DAGs are not widely used, but increasingly popular

- You'll essentially never see them in papers, though it could arguably
be useful

Most closely associated with Judea Pearl
Especially useful for causal inference with observational data
Several reasons for that:

- A compact way to represent causal relationships

- They clarify causal ordering

- Help clarify research designs/estimators, e.g. instrumental variables
- They force you to think about the assumptions you're making
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The famous 3rd variable?

Think about the famous problem of “third variables”

- How would you describe this problem?
- You'll see there are different types
- And your empirical strategy depends on the type
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Anatomy of a DAG

DAGs use a set of nodes and directed edges

X

- The nodes @ represent random variables

- The directed edges represent potential direct causal effects

- Here, we have some treatment D that affects some outcome Y
- We also have a random variable X that affects both D and Y’
- We have a backdoor path between D and Y

- What does that mean? What do we need to do?
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- Here our node O is white and called U

- It's unobserved...

- either because the data has not been collected

- or because it's fundamentally unobservable (examples?)
- Is the causal effect of D on Y identified?
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Simple example

From Andrew Heiss:

Candidate quality

Campaign money @ Win margin

There's an open backdoor path: Money <« Quality »Margin

- To retrive the causal effect Money ->Margin, | need to
adjust/condition/control for Candidate Quality

- In other words: to block the backdoor path

- Matching, regression...


https://evalf20.classes.andrewheiss.com/content/04-content/
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A more complex example

Drawn from the Causal Inference Mixtape:

D: education

Y: wages

I: Parental income

PE: Parental education
A: (unobserved) ability
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Closing backdoor paths

Our goal is to close all backdoor paths

- Such that we're left with the only path we care about: the direct
causal effect of D on'Y
- If we succeed, we have met the backdoor criterion

In the example above, if we condition on I, we've met the backdoor

criterion:

D -Y (causal effect of education on wages)
D «I ->Y (backdoor path 1)

D «PFE ->1 >Y (backdoor path 2)

D «A->PFE >1 -Y (backdoor path 3)

We can identify the causal effect of interest!
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One more complication

But what if ability has a direct effect on wages? And not only through
education?

| now have a backdoor path D « A >Y

- The solution is to condition on A..But it's unobserved!

- Any solutions?
1
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2nd type: Colliders

We've seen confounders, but we also need to be careful with colliders:

We still have a backdoor path: D > X «Y

- But the arrows are pointing into X rather than outward

- Collider: the causal effects of D and Y are colliding at X

- Colliders, if left alone, close the backdoor path

- But if you condition on the collider, you open the backdoor path
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Causation between D and Z

What's going on here? Should | condition on Z7?

- Z is a mediator: D causes Z, which causes Y

- Both causal paths can be interesting!

- But again, you do not want to control for a mediator

- Advanced topics: Mediation analysis for estimation of direct effect vs

total effect
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Some exercises

N@e-----0O S

Vv
< @-----

1. List all nodes
2. List all directed edges
3. Is the relationship between X and Y identified? Why?

14
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Some exercises
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1. Whatis X 7
2. Is the relationship between X and Y identified?
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How do | draw these things?

- ggdaginR
- This website

- tikz in Latex:

\begin{center}

\begin{tikzpicture}[scale=0.8]

\node[shape =
\node[shape =
\node[shape =

\path[->] (D)
\path[->] (X)
\path[->] (X)

circle, fill = black, label=west:D] (D) at (0, 0) {};
circle, fill = black, label=east:Y] (Y) at (4, 0) {};
circle, fill = white, draw = black, label=north:U] (X) at (2, 2) {};

edge[draw=black, very thick] node {} (Y);
edge[draw=black,very thick] node {} (D);
edge[draw=black,very thick] node {} (V);

\end{tikzpicture}

\end{center}
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